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Abstract

Video Paragraph Grounding (VPG) is an essential yet
challenging task in vision-language understanding, which
aims to jointly localize multiple events from an untrimmed
video with a paragraph query description. One of the crit-
ical challenges in addressing this problem is to compre-
hend the complex semantic relations between visual and
textual modalities. Previous methods focus on modeling
the contextual information between the video and text from
a single-level perspective (i.e., the sentence level), ignor-
ing rich visual-textual correspondence relations at different
semantic levels, e.g., the video-word and video-paragraph
correspondence. To this end, we propose a novel Hierar-
chical Semantic Correspondence Network (HSCNet), which
explores multi-level visual-textual correspondence by learn-
ing hierarchical semantic alignment and utilizes dense su-
pervision by grounding diverse levels of queries. Specifi-
cally, we develop a hierarchical encoder that encodes the
multi-modal inputs into semantics-aligned representations
at different levels. To exploit the hierarchical semantic cor-
respondence learned in the encoder for multi-level supervi-
sion, we further design a hierarchical decoder that progres-
sively performs finer grounding for lower-level queries con-
ditioned on higher-level semantics. Extensive experiments
demonstrate the effectiveness of HSCNet and our method
significantly outstrips the state-of-the-arts on two challeng-
ing benchmarks, i.e., ActivityNet-Captions and TACoS.

1. Introduction

As a fundamental problem that bridges the gap between
computer vision and natural language processing, Video
Language Grounding (VLG) aiming to localize the video
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(a) Bottom-Up Hierarchy of 
Linguistic Descriptions

(b) Coarse-to-Fine Hierarchy of
Temporal Counterparts

Then he gets back up and grabs … again.

grabs

This baby … falls down. Then he gets back up and
grabs … again. Next he … hitting it really far.

Words Sentences Paragraph
Figure 1. (a) The bottom-up hierarchy for linguistic semantics is
composed of textual words, sentences, and the paragraph. (b) The
coarse-to-fine hierarchy for temporal granularity consists of visual
counterparts for each level of linguistic query.

segments corresponding to given natural language queries,
has been drawing increasing attention from the community
in these years. Early works in the field of VLG mainly
focused on addressing Video Sentence Grounding (VSG)
[1, 8], whose goal is to localize the most relevant moment
with a single sentence query. Recently, Video Paragraph
Grounding (VPG) is introduced in [2]. It requires to jointly
localize multiple events via a paragraph query consisting of
several temporally ordered sentences. Rather than ground-
ing each event independently, VPG needs to further exploit
the contextual information between the video and the tex-
tual paragraph, which helps to avoid ambiguity and achieve
more precise temporal localization of video events.



Previous VPG works [2,12,26] commonly explore corre-
lations of events by modeling the video-text correspondence
from a single semantic level (i.e., the sentence level). How-
ever, they neglect the rich visual-textual correspondence at
other semantic levels, such as the word level and paragraph
level, which can also provide some useful information for
grounding events in the video. Considering the grounding
of “The man stops and hits the ball far away”, the seman-
tic relations between video content and the word “hits” is
crucial in determining the end time of the event. Besides,
when we consider the paragraph as a whole, then ground-
ing the holistic paragraph in the video first is beneficial to
suppress the irrelevant events or backgrounds, which eases
the further grounding of sentences.

To be more general, we observe that there naturally exist
two perspectives of hierarchical semantic structures in tack-
ling VPG, which is intuitively illustrated in Figure 1. On
the language side, Figure 1 (a) shows that the semantics of
paragraph query can be divided into an inherent three-level
hierarchy consisting of words, sentences, and the holistic
paragraph in a bottom-up organization. On the video side,
Figure 1 (b) shows that the temporal counterparts of dif-
ferent levels of queries also form a three-level granular-
ity hierarchy with temporally nested dependencies from the
top down. By relating the video content to different lev-
els of query semantics for multi-level query grounding, the
model is enforced to capture more complex relations be-
tween events by reasoning about their interconnections at
different semantic granularities, and exploit richer temporal
clues to facilitate the grounding of events in the video.

Motivated by the above observations, we propose a novel
framework termed as Hierarchical Semantic Correspon-
dence Network (HSCNet) for VPG. Our HSCNet is de-
signed as a multi-level encoder-decoder architecture in or-
der to leverage hierarchical semantic information from the
two perspectives. On the one hand, we learn the hierar-
chical visual-textual semantic correspondence by gradually
aligning the visual and textual semantics into different lev-
els of common spaces from the bottom up. Concretely, we
construct a hierarchical multi-modal encoder on top of the
linguistic semantic hierarchy. It comprises three semantic
levels of visual-textual encoders. Each encoder receives the
semantic representation from a lower level and continues
to establish visual-textual correspondence at a higher level
via iterative multi-modal interactions. On the other hand,
we utilize richer cross-level contexts and denser supervi-
sion by progressively grounding multiple levels of queries
from coarse to fine. Specifically, we construct a hierarchical
progressive decoder on top of the temporal granularity hier-
archy, which also comprises three levels of decoders. The
lower-level queries are grounded by finer temporal bound-
aries conditioned on contextual knowledge from higher-
level queries, which eases the learning of multi-level lo-

calization that provides diverse temporal clues to promote
fine-grained video paragraph grounding.

We evaluate the proposed HSCNet on two challenging
benchmarks, i.e., ActivityNet-Captions and TACoS. Ex-
tensive ablation studies validate the effectiveness of the
method. Our contributions can be summarized as follows:

• We investigate and propose a novel hierarchical model-
ing framework for Video Paragraph Grounding (VPG).
To the best of our knowledge, it’s the first time in
the problem of VPG that hierarchical visual-textual se-
mantic correspondence is explored and multiple levels
of linguistic queries can be grounded.

• We design a novel encoder-decoder architecture to
learn multi-level visual-textual correspondence by hi-
erarchical semantic alignment and progressively per-
form finer grounding for lower-level queries.

• Experiments demonstrate that our proposed HSCNet
achieves new state-of-the-art results on the challeng-
ing ActivityNet-Captions and TACoS benchmarks, re-
markably surpassing the previous approaches.

2. Related Work
Video Sentence Grounding. Video Sentence Grounding
(VSG) is introduced by [1, 8], which aims to determine the
start and end timestamps of the most relevant video segment
depicted by a textual sentence query. Existing methods
can be roughly grouped into two categories, i.e., proposal-
based methods and proposal-free methods. Most VSG ap-
proaches [1, 3, 5, 8, 10, 20, 31, 32, 36, 39, 40] fall into the
proposal-based framework, where candidate segments are
generated and then selected by the query matching scores.
Although the proposal-based methods perform well in most
cases, they suffer from overly expensive computation cost
and time consumption, which prevents their applications in
more realistic scenarios. More lately, proposal-free meth-
ods [4, 22, 33, 34, 37] are developed to tackle VSG by
modeling the cross-modal interactions to directly predict
the timestamps of the target moment. Despite the above
progress, VSG approaches are essentially limited to local-
izing the single event described by a single sentence, lack-
ing the capability of understanding more complicated para-
graph texts with multiple consecutive sentences.
Video Paragraph Grounding. Video Paragraph Ground-
ing (VPG) is a recently emerging task introduced by [2].
It requires to simultaneously determine the start and end
timestamps of multiple video segments according to the
given paragraph description. Bao et al. [2] proposed a
Dense Events Propagation Network (DepNet) to effec-
tively capture temporal contexts of multiple events via an
aggregation-and-propagation mechanism. Shi et al. [26]
proposed an end-to-end transformer network to conduct
text-conditioned temporal regression. Jiang et al. [12] pro-
posed a contrastive encoder to learn the video-paragraph
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Figure 2. The overall architecture of Hierarchical Semantic Correspondence Network (HSCNet). It mainly consists of a hierarchical multi-
modal encoder and a hierarchical progressive decoder. Multi-level semantic correspondence is gradually established from the bottom up in
the encoder, while multiple levels of queries are grounded from the top down in the decoder.

matching among sample pairs and explored the semi-
supervised setting in VPG. However, existing methods ne-
glect to utilize the hierarchical semantic correspondence be-
tween visual and textual modalities. This weakness limits
the performance of these methods.
Hierarchical Vision-Language Learning. With the re-
cent progress of Vision-Language Pre-training (VLP), a se-
ries of works [9, 15–17, 35, 38] have started to investigate
the hierarchical learning of vision-language representation.
HERO [15] hierarchically encodes multi-modal inputs for
local-global alignment. OSCAR [16] introduces object se-
mantics to align texts and images in a shared space. X-VLM
[35] proposes to perform multi-grained alignment between
texts and visual concepts. The goal of these VLP meth-
ods is to obtain a hierarchical feature representation for var-
ious downstream tasks using pre-trained object detectors,
off-the-shelf parsers, or additional backbones. In contrast,
our approach is free of any additional external components
(e.g., object detectors) and aims to establish the hierarchical
semantic correspondence between visual and textual modal-
ities for better video paragraph grounding.

3. Methodology
3.1. Overview

Given an untrimmed video and a paragraph query, VPG
aims to jointly localize the temporal boundaries of events
depicted by the temporally ordered sentences in the para-

graph. Specifically, we represent the video as V = {vi}N
F

i=1,
where NF is the number of frames. And the paragraph is
represented as a set of sentences, i.e., S = {si}N

S

i=1, where
NS is the number of sentences. The output of VPG can be
formulated as T = {(ts, te)i}N

S

i=1, where (ts, te)i represents
the starting and ending time of the i-th event.

Existing methods mainly achieve dense grounding of
events by modeling the cross-modal interactions between
V and S. However, we note that the paragraph can also
be semantically parsed as a whole P or a set of words
W = {wi}N

W

i=1 , where NW is the number of words. Mo-
tivated by the above considerations, we propose a novel
framework that explores the hierarchical semantic relations
between V and {P,S,W} to achieve fine-grained cross-
modal understanding for high-quality grounding results.

An overview of the model is illustrated in Figure 2. We
firstly encode the input video and paragraph into feature
representations by a video encoder and text encoder. Then
the visual and textual features are forwarded into a hierar-
chical multi-modal encoder to learn a hierarchical seman-
tic representation of the two modalities. We then employ
a hierarchical decoder that progressively leverages the hier-
archical semantics to conduct multi-level localization from
coarse to fine, which benefits the visual-textual correspon-
dence learning by richer supervision and contexts. For the
final prediction, we jointly utilize multi-level semantics to
conduct fine-grained temporal localization for VPG.



3.2. Feature Encoder

Video Encoder. We uniformly sample NV short clips from
the video and each clip consists of a fixed number of consec-
utive frames. Then, we utilize a pre-trained 3D CNN back-
bone followed by a three-layer self-attention network [28]
to extract clip-level visual features as FV = {fVi }N

V

i=1 ∈
RNV×D, where D indicates the feature dimension.
Text Encoder. For the paragraph query consisting of NW

words, we convert each word into a vector embedding and
then employ a three-layer self-attention network to con-
struct word-level textual features as FW = {fWi }NW

i=1 ∈
RNW×D. Here, the extracted textual features are embed-
ded so that they have the same dimension as visual features.

3.3. Hierarchical Multi-Modal Encoder

We construct a hierarchical encoder on top of three levels
of semantic relations (i.e., video-word, video-sentence, and
video-paragraph), which are naturally derived from the in-
herent hierarchical structure in the text query. Multi-modal
inputs flow through the semantic hierarchy of encoders in a
bottom-up manner, establishing visual-textual semantic cor-
respondence at different levels along the way: (1) The word-
level encoder encourages to align video content with di-
verse linguistic details, such as verbs that deliver action dy-
namics, nouns that deliver entity categories, or other useful
contextualized fragments. (2) The sentence-level encoder
is responsible for event-centric semantic relations between
the video content and sentences, which helps to recognize
and reason about the activity concepts. (3) The paragraph-
level encoder conducts visual-textual reasoning at the high-
est level of abstraction, which takes effect in connecting
video content with the global semantics of the paragraph.
Word-level Encoder. To capture delicate cross-modal de-
pendencies between the video and paragraph, we construct
a word-level encoder to learn the low-level semantic re-
lations between visual and textual modalities. We obtain
the initial visual and textual input as VVW(0) = FV and
QVW(0) = FW . Then in each (k + 1)-th layer, we employ
a multi-modal self-attention mechanism based on semantic
similarities. Concretely, we transform the multi-modal in-
puts into a shared representation MVW(k) ∈ R(NV+NW)×D

by concatenation and projection. Then pairwise semantic
similarities are computed in MVW(k) as:

sVW(k)
ij =

ϕ(k)
(

MVW(k)
i

)T
ρ(k)

(
MVW(k)

j

)
∥∥∥ϕ(k)

(
MVW(k)

i

)∥∥∥∥∥∥ρ(k)
(

MVW(k)
j

)∥∥∥ (σ(k)
vw )−1 (1)

where ϕ(k) (·) and ρ(k) (·) represent different linear pro-
jection functions learned by the network, σ(k) is a scalar
parameter that automatically controls the sharpness of the
above scoring function. And ∥ · ∥ indicates calculating the
value of vector L2 norm. Afterwards, we utilize another lin-
ear functionψ(k) (·) to rearrange the multi-modal semantics

of MVW(k) as follows:

HVW(k+1) = Softmax(sVW(k))ψ(k)
(

MVW(k)
)

(2)

After the multi-modal self-attention layer, we employ two
unshared MLPs that are expert in capturing modality-
specific information to obtain the visual output VVW(k+1)

and textual output QVW(k+1) from HVW(k+1). To en-
sure favorable correspondence learning between the video
and textual words, we stack C1 multi-modal layers to
learn the complex multi-modal interactions, i.e., k ∈
{0, 1, · · ·C1 − 1}. Through understanding the interconnec-
tions between the video and words, the model captures the
most subtle visual-linguistic semantic relations, which fos-
ters fine-grained video paragraph grounding.
Sentence-level Encoder. We construct the sentence-level
semantic learning on the foundation of word-level seman-
tics. First of all, we employ a word pooling operation to
earn the global tokens of textual sentences as follows:

ΩVS
i =

1∣∣IS
i

∣∣ ∑
j∈IS

i

QVW(C1)
j (3)

where IS
i denotes the set of indices of words within the i-th

sentence. Then we use the global tokens as query vectors
in the cross-attention mechanism [28] to induce the initial
sentence-level textual representation QVS(0) as:

QVS(0) = Cross-Attn
(
ΩVS ,QVW(C1),QVW(C1)

)
(4)

We further employ a self-attention layer on VVW(C1) to ob-
tain VVS(0), which enables the reasoning of the word-level
visual semantics and makes it adapted for the subsequent
sentence-level correspondence learning.

Likewise, we construct a video-sentence representation
MVS(0) ∈ R(NV+NS)×D by concatenating and projecting
the sentence-level multi-modal inputs VVS(0) and QVS(0).
A stack of multi-modal self-attention layers and MLPs are
used to obtain the visual and textual output VVS(C2) and
QVS(C2), where C2 is the number of sentence-level layers.
VVS(C2) and QVS(C2) jointly reflect the semantic relations
between the video and sentences. The sentence-level multi-
modal interactions enable to establish the visual-textual cor-
respondence at a higher level than the words, which is sig-
nificant for the grounding of events in the video.
Paragraph-level Encoder. Analogously, we also employ
a sentence pooling operation followed by a cross-attention
operation on QVS(C2) to obtain the initial paragraph-level
textual representation QVP(0). A self-attention layer is
also employed on VVS(C2) to obtain VVP(0). Again, we
form a video-paragraph representation MVP(0). Then C3

multi-modal self-attention layers are iteratively employed
on MVP(0) for the paragraph-level encoder output VVP(C3)

and QVP(C3). At the paragraph level, we learn to establish
the correspondence between video content and the high-
level global semantics of the paragraph, which helps to



highlight the meaningful content related to the text query
and suppress the irrelevant events or backgrounds.
Visual-to-Textual Semantic Aggregation. To exploit the
visual-textual correspondence established in the encoder for
multi-level grounding, we aggregate the visual contents into
the textual queries based on the textual-to-visual semantic
relevance, which can be formulated as follows:

AVℓ =
(

QVℓ(d)
)(

VVℓ(d)
)T

(τ ℓ)−1 (5)

gℓ =
[
QVℓ(d)

;Softmax
(
AVℓ

)
VVℓ(d)

]
(6)

where (ℓ, d) ∈ {(W, C1), (S, C2), (P, C3)}. ℓ and d indi-
cate the semantic level and depth of the last layer in each
visual-textual encoder, respectively. QVℓ(d)

and VVℓ(d)
are

obtained by employing L2 normalization on the features in
QVℓ(d) and VVℓ(d), respectively. AVW , AVS , and AVP

are cross-modal semantic similarity matrices. τ ℓ is the tem-
perature and [; ] denotes the channel concatenation opera-
tion. gℓ is the multi-modal grounding feature that contains
query semantics in both visual and textual modalities, i.e.,
gℓ jointly represents what the textual query conveys and
what relates to the query in the video at semantic level ℓ.

3.4. Hierarchical Progressive Decoder

In the existing works [2, 12, 26], sentence-based query
decoders are commonly employed for video paragraph
grounding. Due to the neglect of hierarchical modeling,
these methods fail to access the multi-level contextual in-
formation or the potential multi-level supervision provided
by grounding diverse levels of queries. In this work, we
develop a hierarchical decoder that progressively performs
finer grounding for lower-level queries conditioned on the
contextual knowledge associated with higher-level queries.
The decoder utilizes rich contexts for multi-level query
grounding, which provides diverse guidance to facilitate the
hierarchical visual-textual correspondence learning.
Paragraph-level Decoder. In the beginning, we employ a
linear layer on gP and then use a two-layer MLP predictor
to obtain the grounding results of the paragraph, which is

denoted as T̃
P
∈ R1×2. Inspired by the principle of Multi-

ple Instance Learning (MIL) [6,21], we define the temporal
union of sentence-wise timestamps as the ground-truth an-
notation for the holistic paragraph, which is approximately
to say, video content relevant to any one of the sentences
should be considered related to the holistic paragraph.
Sentence-level Decoder. At the sentence level, we aim to
localize the sentence-wise timestamps utilizing sentence-
level semantics. Note that we have obtained the paragraph-
level grounding information, which helps to highlight the
meaningful video content associated with the global seman-
tics of the paragraph. To utilize the paragraph-level con-
textual knowledge, we feed gS and gP to an LSTM [11]

module as follows:{
gSP
i

}NS

i=1
= LSTM

({
[gSi ; gP ]

}NS

i=1

)
(7)

where gP serves as a conditional context vector that facili-
tates the learning of sentence-level grounding. Then a two-
layer MLP predictor is employed on gSP to acquire tempo-

ral boundaries for each sentence, i.e., T̃
S
∈ RNS×2.

Word-level Decoder. For the word-level decoding, we per-
form temporal localization with respect to each individual
word, which stimulates the learning of fine-grained ground-
ing. To this end, we first obtain g̃W ∈ RNS×M×D by refor-
matting the word-level tokens distributed in the paragraph
(i.e., gW ∈ RNW×D) into word-level tokens distributed in
single sentences, where M is the padding size and we set it
as the length of the longest sentence in the paragraph. Then
we input g̃W and gSP into an LSTM module to learn the
word-level contexts as follows:{

g̃WS
i,j

}NW
i

j=1
= LSTM

({
[g̃Wi,j ; gSP

i ]
}NW

i

j=1

)
(8)

where g̃WS is the word-level grounding features learned in
the context of the sentence it belongs to. We also employ
a two-layer MLP on g̃WS to acquire word-level grounding

results T̃
W

∈ RNS×M×2, which is supervised by an ap-
proximate word-level grounding loss.
Grounding Prediction. To jointly exploit multi-level se-
mantics for final prediction, we first use a cross-attention
layer to select word-level semantics highly relevant to the
sentence’s grounding, which is denoted as gWS ∈ RNS×D.
Then we jointly utilize multi-level features for grounding
by forming [gWS ; gSP ]. A two-layer MLP predictor is em-
ployed to obtain the final output for VPG, i.e., T̂ ∈ RNS×2.

3.5. Training Loss

Encoder Loss. To guide the learning of hierarchical multi-
modal interactions, we employ multi-level semantic align-
ment loss in the encoder, which is constructed based on
the correspondence relationships between visual and tex-
tual modalities at different semantic levels. The encoder
loss Lenc is formulated as:

Lenc = LVW
enc + LVS

enc + LVP
enc (9)

where LVW
enc , LVS

enc, and LVP
enc are computed on the visual-

textual semantic similarity matrices at different levels, i.e.,
AVW , AVS , and AVP derived from eq.5. The alignment
loss is computed as the negative log-likelihood of the sum
of semantic similarities after softmax operation.
Decoder Loss. We employ multiple levels of localization
loss on the intermediate grounding results given by different



Table 1. Comparison with state-of-the-arts on ActivityNet-Captions and TACoS.

Method
ActivityNet-Captions TACoS

R@IoU=0.3 R@IoU=0.5 R@IoU=0.7 mIoU R@IoU=0.1 R@IoU=0.3 R@IoU=0.5 mIoU

DRN [34] - 45.45 24.36 - - - 23.17 -
2D-TAN [39] 59.45 44.51 26.54 - 47.59 37.29 - -
BPNet [30] 58.98 42.07 24.69 42.11 - 25.96 20.96 19.53
CBLN [19] 66.34 48.12 27.60 - 49.16 38.98 27.65 -
MMN [29] 65.05 48.59 29.26 - 51.39 39.24 26.17 -
SLP [18] - 52.89 32.04 - - 42.73 32.58 -

Beam Search [7] 62.53 46.43 27.12 - 48.46 38.14 25.72 -
3D-TPN [39] 67.56 51.49 30.92 - 55.05 40.31 26.54 -
DepNet [2] 72.81 55.91 33.46 - 56.10 41.34 27.16 -
PRVG [26] 78.27 61.15 37.83 55.62 61.64 45.40 26.37 29.18
SVPTR [12] 78.07 61.70 38.36 55.91 67.91 47.89 28.22 31.42
HSCNet 81.89 66.57 44.03 59.71 76.28 59.74 42.00 40.61

levels of decoder, which is formulated as:

Ldec = LP
dec + LS

dec + LW
union + LW

subset︸ ︷︷ ︸
weakly-supervised LW

dec

(10)

where the paragraph-level decoding loss LP
dec and sentence-

level decoding loss LS
dec both consist of a L1 distance loss

and a GIoU [24] loss supervised by the ground-truth times-
tamps. For word-level decoding, since there is no ground-
truth supervision provided, we design a weakly-supervised
loss for approximation of word-level localization. Specifi-
cally, LW

union constrains the temporal union of timestamps
corresponding to all words within a sentence is close to the
timestamp of that sentence, and LW

subset encourages each
word to be grounded as a temporal subset of the timestamps
corresponding to the sentence it belongs to.
Grounding Loss. For the final grounding predictions T̂ ,
we also employ a localization loss Lgrd, which is computed
as the sum of L1 distance and GIoU Loss between the pre-
dicted and ground-truth timestamps.

In total, we jointly minimize the encoder loss, decoder
loss, and grounding loss for end-to-end model training:

Ltotal = Lenc + Ldec + Lgrd (11)

We provide more implementation details about the training
loss functions in the supplementary materials.

4. Experiments
4.1. Datasets and Evaluation Metrics

ActivityNet-Captions. ActivityNet-Captions [14] is orig-
inally collected for dense video captioning and is later in-
troduced into VSG and VPG. The training, val 1, and val 2
sets include 37417, 17505, and 17031 annotated sentences,
respectively. On average, each paragraph consists of 4.08

sentences and the duration of annotated moments is 36.2
seconds. Following the previous work [2], We adopt val 2
as the testing set.
TACoS. TACoS is manually collected from MPII Cooking
Composite Activities dataset [25]. Each video is annotated
with diverse paragraph descriptions at different granulari-
ties. On average, each video has a duration of 4.79 min-
utes and each paragraph consists of 8.75 sentences in total.
There are 10146, 4589, and 4083 annotated sentences for
training, validation, and testing sets, respectively.
Evaluation Metrics. We adopt the recall with an IoU
threshold of m to evaluate grounding performance under
various precision requirements, which is denoted as R@m.
And m is set to be {0.3, 0.5, 0.7} on ActivityNet-Captions
and {0.1, 0.3, 0.5} on TACoS, respectively. We also adopt
mIoU to evaluate the overall grounding performance of the
model. Following the previous work [2], reported evalua-
tion metrics are averaged over all sentences in the dataset.

4.2. Implementation Details

We uniformly sample 256 and 512 video clips for
ActivityNet-Captions and TACoS, respectively. The length
of each video clip is set to be 16 on all datasets. For fair
comparison with the previous works [2, 12, 26], we adopt
the same backbones for feature extraction, i.e., we employ
the pre-trained C3D [27] model without fine-tuning to ex-
tract visual features for video clips and employ pre-trained
Glove [23] model to extract word-level features for the para-
graph. The depth of encoder layers {C1, C2, C3} is set as
{1, 1, 1} and {3, 3, 3} on ActivityNet-Captions and TACoS.
We train the model by Adam [13] optimizer without weight
decay. The learning rate is set as 0.0001 on all datasets and
the batch size is set as 32 and 16 for ActivityNet-Captions
and TACoS, respectively. Following [28], we implement
multi-modal self-attention layers in a multi-head fashion.



The temperature τ ℓ is empirically set to be 0.2 for all lev-
els. The hidden size D is set to be 256 in all settings.

4.3. Comparison with state-of-the-arts

To show the superiority of our proposed method, we
compare it with the existing state-of-the-art VPG ap-
proaches including DepNet [2], PRVG [26], and SVPTR
[12] on ActivityNet-Captions and TACoS benchmarks. Two
baselines (i.e., Beam Search and 3D-TPN) proposed in [2]
are also reported for reference. For more comprehensive
comparison, we also compare our method with the state-
of-the-art VSG approaches, including DRN [34], 2D-TAN
[39], BPNet [30], CBLN [19], MMN [29] and SLP [18].

As shown in Table 1, our HSCNet outperforms the exist-
ing state-of-the-arts in all evaluation metrics by a significant
margin, which shows the superiority of our method with hi-
erarchical modeling. Concretely, our method achieves an
mIoU performance of 59.71% and 40.61% on ActivityNet-
Captions and TACoS, which exceeds the state-of-the-art
VPG approaches [2, 12, 26] without hierarchical modeling
by 3.80% and 9.19%, respectively. This verifies that explic-
itly exploring hierarchical visual-textual correspondences
(i.e., video-word, video-sentence, and video-paragraph) is
beneficial for video paragraph grounding. We also note that
previous methods perform worse and achieve lower recall
rates on TACoS than on ActivityNet-Captions. The rea-
son is that TACoS is more challenging due to its longer
videos and more complicated paragraphs. The more com-
plex structure of videos and paragraphs in TACoS deterio-
rates the performance of previous methods, while strength-
ening the advantages of our method in which hierarchical
modeling is utilized to handle complicated visual-textual se-
mantic relations. Specifically, our HSCNet can bring a re-
markable improvement up to 13.78% in R@0.5 on TACoS,
which further validates the superiority of our method.

4.4. Quantitative Analysis

In this section, we conduct extensive ablation studies on
TACoS to verify the effectiveness of our model designs.
Impact of Hierarchical Modeling We study the impact
of the proposed hierarchical modeling by removing certain
levels (e.g., word level and paragraph level) from both of
the hierarchical encoder and decoder. The results are pre-
sented in Table 2. By converting our hierarchical model into
a single-level (sentence-level) model, we observe a clear
degradation in performance up to 7.95% of mIoU, which
indicates the importance of hierarchical modeling in VPG.
Moreover, we find that modeling the word level or para-
graph level consistently improves the system performance,
and simultaneously modeling all the semantic levels per-
forms the best, which demonstrates that the formulated mul-
tiple semantic levels complement well with each other.
Impact of Alignment Loss. We conduct extensive experi-

Table 2. Ablation study on hierarchical modeling. We abbreviate
the modeling of word level, sentence level, and paragraph level as
WL, SL, and PL, respectively.

Level R@0.3 R@0.5 mIoU

SL 49.27 30.14 32.66
SL + PL 53.73 32.67 35.18
SL + WL 54.79 38.76 37.43

SL + PL + WL 59.74 42.00 40.61

Table 3. Ablation study on semantic alignment loss in the encoder.

LW
enc LS

enc LP
enc R@0.3 R@0.5 mIoU

✗ ✗ ✗ 29.98 12.81 22.38
✗ ✗ ✓ 36.34 17.14 25.56
✗ ✓ ✗ 48.94 31.18 32.71
✓ ✗ ✗ 52.23 34.25 35.02
✗ ✓ ✓ 51.66 32.86 34.46
✓ ✗ ✓ 55.66 35.85 37.49
✓ ✓ ✗ 56.80 38.82 38.39
✓ ✓ ✓ 59.74 42.00 40.61

Table 4. Ablation Study on different levels of decoders. We abbre-
viate the word-level, sentence-level, and paragraph-level decoder
as WD, SD, and PD, respectively.

Decoder R@0.3 R@0.5 mIoU

SD 53.56 38.55 37.57
SD + PD 55.41 38.90 38.33
SD + WD 56.78 40.21 39.10

SD + PD + WD 59.74 42.00 40.61

ments to investigate the influences of visual-textual align-
ment loss at different semantic levels. As shown in Ta-
ble 3, we can see that each level of semantic alignment
brings some gains to the model performance. More specif-
ically, the word-level alignment loss has the greatest im-
pact on the performance, which brings an improvement of
12.64% (row 1 vs. row 4), 11.93% (row 2 vs. row 6),
5.68% (row 3 vs. row 7), and 6.15% (row 5 vs. row 8) in
mIoU. This is because the word-level correspondence cap-
tures the fine-grained semantic relations between visual and
textual modalities, which is crucial for obtaining more ac-
curate event boundary prediction.
Impact of Decoders. As shown in Table 4, we verify the
effectiveness of the design of hierarchical decoder. For the
baseline model in row 1, it is obtained by discarding the
paragraph-level decoder and word-level decoder. In row 2
and row 3, we observe that enabling the paragraph-level
or word-level decoder is beneficial to improve the perfor-
mance. Row 4 indicates that jointly employing all levels of
decoder is most effective to boost the performance, with up
to 3.04% gains in mIoU compared with the baseline.



① A young man with bleached white hair sits at a piano. ② He begins playing the piano enthusiastically. 
③ The finishes the song, gets up and leaves smiling.

① A woman is seen standing in the middle of a large crowd with a man bending down in front. ② The 
man and woman begin dancing with one another in front of the large crowd.③ The two continue 
dancing with one another while others watch and end by bowing andtaking tips.
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Figure 3. Comparison of single-level (sentence-level) predictions
and the final multi-level predictions.

4.5. Qualitative Analysis

In this section, we would like to present some visualiza-
tion results about HSCNet for further qualitative analysis.
Comparison of single-level and multi-level predictions.
As shown in Figure 3, we visualize the model’s prediction
results and compare them with the ground-truth and the in-
termediate grounding results given by the sentence-level de-
coder. It can be seen that the final predictions inferred via
multi-level semantic features are close to the ground-truth
and have finer boundaries than the sentence-based single-
level predictions, which verifies the efficacy of jointly uti-
lizing multiple levels of semantics in the hierarchy.
Demonstration of the hierarchy understanding ability.
We visualize the grounding results given by our hierarchi-
cal model for multiple levels of linguistic queries in Fig-
ure 4, which helps to intuitively demonstrate the hierarchy
understanding ability of HSCNet towards the video-text se-
mantic correspondence. For the high-level paragraph un-
derstanding, we can see the holistic paragraph is grounded
by a lengthy moment spanning plenty of video content men-
tioned by the text query. For the sentence-level understand-
ing, a series of textual sentences are successfully grounded
by a set of moments located within the paragraph’s duration.
These event moments consistently follow the same tempo-
ral order as their sentences. Furthermore, we also present
detailed results for word-level understanding of “She peels
and chops the kiwis”. It’s clear that we can observe suc-
cess cases where two consecutive verbs “peels” and “chops”

Peels

Chops

Kiwis

①～⑥

Sent.②

Sent.①

Para.
Level

Sent.
Level

Word
Level

Sent.③

Sent.④

Sent.⑤

Sent.⑥

① She gets two kiwis ② She gets a cutting board ③ She gets a plate ④ She gets 
a knife then rinses the kiwis ⑤ She peels and chops the kiwis⑥ She cleans up

Query

Video

Figure 4. Demonstration of the model’s hierarchy understanding
ability towards the video-text semantic correspondence.

are exactly grounded by two temporally ordered moments,
whose temporal union approximately spans across the full
event. Meanwhile, we also observe some failure cases, e.g.,
the word “kiwis” is only grounded by the second half of
the event’s temporal interval, while it actually lasts for the
entire period. The reason might be that when the fruit is
peeled, it is heavily occluded by the knife and hands, mak-
ing it difficult to be identified.

5. Conclusion
In this paper, we propose a novel Hierarchical Seman-

tic Correspondence Network (HSCNet) to explicitly explore
the hierarchical semantic structures in tackling the problem
of Video Paragraph Grounding (VPG). Specifically, we de-
sign our HSCNet as a three-level encoder-decoder archi-
tecture. The encoder is employed to learn different levels
of visual-textual correspondence along a semantic hierar-
chy from the bottom up, and the decoder progressively per-
forms finer temporal grounding for lower-level queries con-
ditioned on higher-level queries from coarse to fine. The
combination of our hierarchical encoder and decoder en-
ables the model to achieve fine-grained vision-language un-
derstanding and precise query-based localization of events
in the video. Extensive experiments validate the effec-
tiveness of our HSCNet and demonstrate that our method
achieves new state-of-the-art results on two challenging
benchmarks, i.e., ActivityNet-Captions and TACoS.
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